Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.101
Filter
1.
Biotechnol Lett ; 46(3): 459-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523200

ABSTRACT

Solar ultraviolet radiations induced DNA damages in human skin cells with cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PPs) as the most frequent lesions. CPDs are repaired much slower than 6-4PPs by the nucleotide excision repair pathway, which are thus the major lesions that interfere with key cellular processes and give rise to gene mutations, possibly resulting in skin cancer. In prokaryotes and multicellular eukaryotes other than placental mammals, CPDs can be rapidly repaired by CPD photolyases in one simple enzymatic reaction using the energy of blue light. In this study, we aim to construct recombinant CPD photolyases that can autonomously enter human cell nuclei to fix UV-induced CPDs. A fly cell penetration peptide and a viral nucleus localization signal peptide were recombined with a fungal CPD photolyase to construct a recombinant protein. This engineered CPD photolyase autonomously crosses cytoplasm and nuclear membrane of human cell nuclei, which then efficiently photo-repairs UV-induced CPD lesions in the genomic DNA. This further protects the cells by increasing SOD activity, and decreasing cellular ROSs, malondialdehyde and apoptosis.


Subject(s)
Cell Nucleus , DNA Damage , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Pyrimidine Dimers , Recombinant Proteins , Ultraviolet Rays , Humans , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Cell Nucleus/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
2.
Plant Physiol ; 195(1): 326-342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38345835

ABSTRACT

Photoreactivation enzyme that repairs cyclobutane pyrimidine dimer (CPD) induced by ultraviolet-B radiation, commonly called CPD photolyase (PHR) is essential for plants living under sunlight. Rice (Oryza sativa) PHR (OsPHR) is a unique triple-targeting protein. The signal sequences required for its translocation to the nucleus or mitochondria are located in the C-terminal region but have yet to be identified for chloroplasts. Here, we identified sequences located in the N-terminal region, including the serine-phosphorylation site at position 7 of OsPHR, and found that OsPHR is transported/localized to chloroplasts via a vesicle transport system under the control of serine-phosphorylation. However, the sequence identified in this study is only conserved in some Poaceae species, and in many other plants, PHR is not localized to the chloroplasts. Therefore, we reasoned that Poaceae species need the ability to repair CPD in the chloroplast genome to survive under sunlight and have uniquely acquired this mechanism for PHR chloroplast translocation.


Subject(s)
Chloroplasts , Deoxyribodipyrimidine Photo-Lyase , Oryza , Ultraviolet Rays , Chloroplasts/metabolism , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Oryza/genetics , Oryza/enzymology , Oryza/radiation effects , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pyrimidine Dimers/metabolism , Poaceae/genetics , Poaceae/enzymology , Poaceae/radiation effects , Poaceae/metabolism , Amino Acid Sequence , Protein Transport
3.
Chem Biol Interact ; 388: 110837, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38104746

ABSTRACT

Cyclobutane pyrimidine dimer (CPD) and (6-4)photoproduct (6-4 PP) are two major types of UV-induced DNA lesion and 6-4 PP is more mutagenic than CPD. Activated by lesion detection, nucleotide excision repair (NER) eliminates CPDs and 6-4 PPs. Thallium (Tl) is a toxic metal existing primarily as Tl+ in the aquatic environment. Ingestion of Tl+-contaminated foods and water is a major route of human poisoning. As Tl+ may inhibit enzyme activities via binding to sulfhydryl groups, this study explored if Tl+ could intensify UV mutagenicity by inactivating NER-linked damage recognition factors using zebrafish (Danio rerio) embryo as a model system. Incubation of Tl+ (as thallium nitrate) at 0.1-0.4 µg/mL with zebrafish extracts for 20 min caused a concentration-dependent inhibition of 6-4 PP binding activities as shown by a photolesion-specific band shift assay, while CPD binding activities were insensitive to Tl+. The ability of Tl+ to suppress 6-4 PP detection was stronger than that of Hg2+. Exposure of zebrafish embryos at 1 h post fertilization (hpf) to Tl+ at 0.4-1 µg/mL for 9 or 71 h also specifically inhibited 6-4 PP detection, indicating that Tl+ induced a prolonged inhibition of 6-4 PP sensing ability primarily via its direct interaction with damage recognition molecules. Tl+-mediated inhibition of 6-4 PP binding in embryos at distinct stages resulted in a suppression of NER capacity monitored by a transcription-based DNA repair assay. Our results revealed the potential of Tl+ to enhance UV mutagenicity by disturbing the removal of 6-4 PP through repressing the lesion detection step of NER.


Subject(s)
Excision Repair , Zebrafish , Animals , Humans , Zebrafish/metabolism , Thallium/toxicity , Thallium/metabolism , DNA Repair , DNA Damage , Pyrimidine Dimers/metabolism , Ultraviolet Rays
4.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37816354

ABSTRACT

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Subject(s)
Xeroderma Pigmentosum , Humans , Xeroderma Pigmentosum/genetics , DNA Repair/genetics , Pyrimidine Dimers/genetics , Pyrimidine Dimers/metabolism , DNA Damage/genetics , DNA/genetics , Ultraviolet Rays , X-ray Repair Cross Complementing Protein 1/metabolism
5.
Physiol Plant ; 175(5): e14049, 2023.
Article in English | MEDLINE | ID: mdl-37882276

ABSTRACT

The single-stranded DNA/RNA binding protein WHIRLY1 is a major chloroplast nucleoid-associated protein required for the compactness of nucleoids. Most nucleoids in chloroplasts of WHIRLY1-knockdown barley plants are less compact compared to nucleoids in wild-type plants. The reduced compaction leads to an enhanced optical cross-section, which may cause the plastid DNA to be a better target for damaging UV-B radiation. To investigate this hypothesis, primary foliage leaves, chloroplasts, and nuclei from wild-type and WHIRLY1-knockdown plants were exposed to experimental UV-B radiation. Thereafter, total, genomic and plastid DNA were isolated, respectively, and analyzed for the occurrence of cyclobutane pyrimidine dimers (CPDs), which is a parameter for genome stability. The results of this study revealed that WHIRLY1-deficient chloroplasts had strongly enhanced DNA damages, whereas isolated nuclei from the same plant line were not more sensitive than nuclei from the wild-type, indicating that WHIRLY1 has different functions in chloroplasts and nucleus. This supports the hypothesis that the compaction of nucleoids may provide protection against UV-B radiation.


Subject(s)
Plant Proteins , Pyrimidine Dimers , Pyrimidine Dimers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chloroplasts/metabolism , Ultraviolet Rays , DNA/metabolism
6.
J Photochem Photobiol B ; 245: 112757, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37481791

ABSTRACT

The application of a far-ultraviolet C (UVC) light emitting diode (LED) of 233 nm showed significant bactericidal efficacy at an applied dose between 20 and 80 mJ cm-2 as reported recently. In addition, only minor epidermal DNA lesions were observed in ex vivo human skin and in vitro epidermal models <10% of the minimal erythema dose of UVB radiation. To broaden the potential range of applications of such systems, e.g. to include postoperative application on wounds for the purpose of decontamination, we assessed how a disruption of normal anatomic skin structure and function influences the skin damage induced by light from 233 nm far-UVC LEDs. Thus, we induced superficial skin wounds by mechanical detachment of the stratum corneum in ex vivo human skin. Barrier-disruption of the skin could be successfully determined by measuring an increase in the transepidermal water loss (TEWL) and the stratum corneum loss could be determined morphologically by 2-photon microscopy (2-PM). After far-UVC irradiation of the skin, we screened the tissue for the development of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). The abundance of DNA lesions was elevated in wound skin in comparison to intact skin after irradiation with far-UVC. However, no increase in DNA lesions was detected when artificial wound exudate consisting of cell culture medium and serum was applied to the disrupted skin surface prior to irradiation. This effect agrees with the results of ray tracing simulations of the absorption of far-UVC light incident on a superficial skin wound. Interestingly, no significant deviations in radical formation between intact skin and superficially wounded skin were detected after far-UVC irradiation as analyzed by electron paramagnetic resonance (EPR) spectroscopy. In conclusion, 233 nm LED light at a dose of 60 mJ/cm2 could be applied safely on superficial wounds for the purpose of skin antisepsis as long as the wounds are covered with wound fluid.


Subject(s)
Pyrimidine Dimers , Skin , Humans , Skin/radiation effects , Pyrimidine Dimers/metabolism , Epidermis , DNA/metabolism , Ultraviolet Rays , DNA Damage
7.
Nat Commun ; 14(1): 2701, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169761

ABSTRACT

Decades ago, it was shown that proteins binding to DNA can quantitatively alter the formation of DNA damage by UV light. This established the principle of UV footprinting for non-intrusive study of protein-DNA contacts in living cells, albeit at limited scale and precision. Here, we perform deep base-resolution quantification of the principal UV damage lesion, the cyclobutane pyrimidine dimer (CPD), at select human promoter regions using targeted CPD sequencing. Several transcription factors exhibited distinctive and repeatable damage signatures indicative of site occupancy, involving strong (up to 17-fold) position-specific elevations and reductions in CPD formation frequency relative to naked DNA. Positive damage modulation at some ETS transcription factor binding sites coincided at base level with melanoma somatic mutation hotspots. Our work provides proof of concept for the study of protein-DNA interactions at individual loci using light and sequencing, and reveals widespread and potent modulation of UV damage in regulatory regions.


Subject(s)
DNA-Binding Proteins , Ultraviolet Rays , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Damage , Pyrimidine Dimers/metabolism , DNA/metabolism
8.
PLoS One ; 18(4): e0283572, 2023.
Article in English | MEDLINE | ID: mdl-37027425

ABSTRACT

Absorption of ultraviolet radiation (UVR) by DNA leads to the predominant formation of cyclobutane pyrimidine dimers (CPD). Since those CPD are responsible for the driver mutations found in skin cancers, their efficient repair is critical. We previously showed that pre-stimulation of fibroblasts with chronic low doses of UVB (CLUV) increases CPD repair efficiency. Since skin cancers are not arising from dermal fibroblasts, this observation is not directly relevant to cutaneous carcinogenesis. We have now exposed HaCaT keratinocytes to a CLUV irradiation protocol to determine whether this pre-stimulation influences CPD removal rate. Similar to fibroblasts, CLUV treatment leads to the accumulation of residual CPD in keratinocytes, which are not repaired but rather tolerated and diluted through DNA replication. In contrast to fibroblasts, in keratinocytes we find that CLUV pre-treatment reduces CPD removal of newly generated damage without inducing a higher sensitivity to UVR-induced cell death. Using our experimental data, we derived a theoretical model to predict CPD induction, dilution and repair that occur in keratinocytes when chronically UVB-irradiated. Altogether, these results suggest that the accumulation of unrepaired CPD and the reduction in repair efficiency caused by chronic UVB exposure might lead to an increase in skin cancer driver mutations.


Subject(s)
Skin Neoplasms , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , DNA Damage , HaCaT Cells/metabolism , DNA Repair/genetics , Pyrimidine Dimers/metabolism , Keratinocytes/metabolism , Skin Neoplasms/genetics
9.
J Biol Chem ; 299(5): 104679, 2023 05.
Article in English | MEDLINE | ID: mdl-37028766

ABSTRACT

The 3D organization of the eukaryotic genome is crucial for various cellular processes such as gene expression and epigenetic regulation, as well as for maintaining genome integrity. However, the interplay between UV-induced DNA damage and repair with the 3D structure of the genome is not well understood. Here, we used state-of-the-art Hi-C, Damage-seq, and XR-seq datasets and in silico simulations to investigate the synergistic effects of UV damage and 3D genome organization. Our findings demonstrate that the peripheral 3D organization of the genome shields the central regions of genomic DNA from UV-induced damage. Additionally, we observed that potential damage sites of pyrimidine-pyrimidone (6-4) photoproducts are more prevalent in the nucleus center, possibly indicating an evolutionary pressure against those sites at the periphery. Interestingly, we found no correlation between repair efficiency and 3D structure after 12 min of irradiation, suggesting that UV radiation alters the genome's 3D organization in a short period of time. Interestingly, however, 2 h after UV induction, we observed more efficient repair levels in the center of the nucleus relative to the periphery. These results have implications for understanding the etiology of cancer and other diseases, as the interplay between UV radiation and the 3D genome may play a role in the development of genetic mutations and genomic instability.


Subject(s)
DNA Damage , DNA Repair , Epigenesis, Genetic , Pyrimidine Dimers/metabolism , Ultraviolet Rays/adverse effects
10.
J Photochem Photobiol B ; 243: 112713, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086566

ABSTRACT

Ultraviolet C (UVC) light has long been used as a sterilizing agent, primarily through devices that emit at 254 nm. Depending on the dose and duration of exposure, UV 254 nm can cause erythema and photokeratitis and potentially cause skin cancer since it directly modifies nitrogenated nucleic acid bases. Filtered KrCl excimer lamps (emitting mainly at 222 nm) have emerged as safer germicidal tools and have even been proposed as devices to sterilize surgical wounds. All the studies that showed the safety of 222 nm analyzed cell number and viability, erythema generation, epidermal thickening, the formation of genetic lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs) and cancer-inducing potential. Although nucleic acids can absorb and be modified by both UV 254 nm and UV 222 nm equally, compared to UV 254 nm, UV 222 nm is more intensely absorbed by proteins (especially aromatic side chains), causing photooxidation and cross-linking. Here, in addition to analyzing DNA lesion formation, for the first time, we evaluated changes in the proteome and cellular pathways, reactive oxygen species formation, and metalloproteinase (MMP) levels and activity in full-thickness in vitro reconstructed human skin (RHS) exposed to UV 222 nm. We also performed the longest (40 days) in vivo study of UV 222 nm exposure in the HRS/J mouse model at the occupational threshold limit value (TLV) for indirect exposure (25 mJ/cm2) and evaluated overall skin morphology, cellular pathological alterations, CPD and 6-4PP formation and MMP-9 activity. Our study showed that processes related to reactive oxygen species and inflammatory responses were more altered by UV 254 nm than by UV 222 nm. Our chronic in vivo exposure assay using the TLV confirmed that UV 222 nm causes minor damage to the skin. However, alterations in pathways related to skin regeneration raise concerns about direct exposure to UV 222 nm.


Subject(s)
DNA Damage , Nucleic Acids , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , Pyrimidine Dimers/metabolism , Skin/radiation effects , Ultraviolet Rays , Nucleic Acids/metabolism , Erythema
11.
Dev Growth Differ ; 65(4): 194-202, 2023 May.
Article in English | MEDLINE | ID: mdl-36880984

ABSTRACT

Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.


Subject(s)
DNA Damage , Deoxyribodipyrimidine Photo-Lyase , Animals , Humans , Xenopus laevis/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Pyrimidine Dimers/genetics , Pyrimidine Dimers/metabolism , Ultraviolet Rays/adverse effects
12.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902353

ABSTRACT

The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.


Subject(s)
Receptors, Calcium-Sensing , Skin Neoplasms , Female , Animals , Mice , Humans , Mice, Hairless , Receptors, Calcium-Sensing/metabolism , Ultraviolet Rays , DNA Damage , Skin Neoplasms/metabolism , Pyrimidine Dimers/metabolism , Skin/metabolism
13.
Photochem Photobiol ; 99(5): 1248-1257, 2023.
Article in English | MEDLINE | ID: mdl-36692077

ABSTRACT

Photolyases are flavoproteins, which are able to repair UV-induced DNA lesions in a light-dependent manner. According to their substrate, they can be distinguished as CPD- and (6-4) photolyases. While CPD-photolyases repair the predominantly occurring cyclobutane pyrimidine dimer lesion, (6-4) photolyases catalyze the repair of the less prominent (6-4) photoproduct. The subgroup of prokaryotic (6-4) photolyases/FeS-BCP is one of the most ancient types of flavoproteins in the ubiquitously occurring photolyase & cryptochrome superfamily (PCSf). In contrast to canonical photolyases, prokaryotic (6-4) photolyases possess a few particular characteristics, including a lumazine derivative as antenna chromophore besides the catalytically essential flavin adenine dinucleotide as well as an elongated linker region between the N-terminal α/ß-domain and the C-terminal all-α-helical domain. Furthermore, they can harbor an additional short subdomain, located at the C-terminus, with a binding site for a [4Fe-4S] cluster. So far, two crystal structures of prokaryotic (6-4) photolyases have been reported. Within this study, we present the high-resolution structure of the prokaryotic (6-4) photolyase from Vibrio cholerae and its spectroscopic characterization in terms of in vitro photoreduction and DNA-repair activity.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/metabolism , Pyrimidine Dimers/metabolism , DNA Repair , DNA , Flavoproteins/genetics , Flavoproteins/metabolism , Flavin-Adenine Dinucleotide/metabolism , Cryptochromes/genetics , Cryptochromes/metabolism
14.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499473

ABSTRACT

UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Microalgae , Animals , Humans , Mice , Antioxidants/pharmacology , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , DNA Damage , Microalgae/metabolism , NF-kappa B/genetics , Pyrimidine Dimers/metabolism , Ultraviolet Rays
15.
Microbiol Spectr ; 10(6): e0221522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36219103

ABSTRACT

Light quality is a significant factor for living organisms that have photosensory systems, such as rhodopsin, a seven alpha-helical transmembrane protein with the retinal chromophore. Here, we report, for the first time, the function of new rhodopsin, which is an inverted 7-transmembrane protein, isolated from Trichococcus flocculiformis. T. flocculiformis heliorhodopsin (TfHeR) works as a regulatory helper rhodopsin that binds with class 2 cyclobutane pyrimidine dimer (CPDII) photolyase to broaden the spectrum and upregulate DNA repair activity. We have confirmed their interaction through isothermal titration calorimetry (dissociation constant of 21.7 µM) and identified the charged residues for the interaction. Based on in vivo and in vitro experiments, we showed that the binding of heliorhodopsin with photolyase improved photolyase activity by about 3-fold to repair UV-caused DNA damage. Also, the DNA repair activity of TfHeR/T. flocculiformis photolyase (TfPHR) was observed in the presence of green light. Our results suggested that heliorhodopsin directly controls the activity of photolyase and coevolves to broaden the activity spectrum by protein-protein interaction. IMPORTANCE This study reports a function for Heliorhodopsin working as a regulatory helper rhodopsin that with CPDII photolyase to broaden the spectrum and upregulating the DNA repair activity. Our results suggested that heliorhodopsin directly controls photolyase activity and coevolves to broaden the DNA repair capacity by protein-protein interaction.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Rhodopsin/genetics , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism , DNA Repair
16.
Toxicol Appl Pharmacol ; 454: 116230, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36087615

ABSTRACT

Arsenite interferes with DNA repair protein function resulting in the retention of UV-induced DNA damage. Accumulated DNA damage promotes replication stress which is bypassed by DNA damage tolerance pathways such as translesion synthesis (TLS). Rad18 is an essential factor in initiating TLS through PCNA monoubiquitination and contains two functionally and structurally distinct zinc fingers that are potential targets for arsenite binding. Arsenite treatment displaced zinc from endogenous Rad18 protein and mass spectrometry analysis revealed arsenite binding to both the Rad18 RING finger and UBZ domains. Consequently, arsenite inhibited Rad18 RING finger dependent PCNA monoubiquitination and polymerase eta recruitment to DNA damage in UV exposed keratinocytes, both of which enhance the bypass of cyclobutane pyrimidine dimers during replication. Further analysis demonstrated multiple effects of arsenite, including the reduction in nuclear localization and UV-induced chromatin recruitment of Rad18 and its binding partner Rad6, which may also negatively impact TLS initiation. Arsenite and Rad18 knockdown in UV exposed keratinocytes significantly increased markers of replication stress and DNA strand breaks to a similar degree, suggesting arsenite mediates its effects through Rad18. Comet assay analysis confirmed an increase in both UV-induced single-stranded DNA and DNA double-strand breaks in arsenite treated keratinocytes compared to UV alone. Altogether, this study supports a mechanism by which arsenite inhibits TLS through the altered activity and regulation of Rad18. Arsenite elevated the levels of UV-induced replication stress and consequently, single-stranded DNA gaps and DNA double-strand breaks. These potentially mutagenic outcomes support a role for TLS in the cocarcinogenicity of arsenite.


Subject(s)
Arsenic , Arsenites , Arsenic/metabolism , Arsenites/metabolism , Arsenites/toxicity , Chromatin , DNA Damage , DNA Repair , DNA Replication , DNA, Single-Stranded , Proliferating Cell Nuclear Antigen/metabolism , Pyrimidine Dimers/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zinc/metabolism
17.
Photochem Photobiol ; 98(5): 987-997, 2022 09.
Article in English | MEDLINE | ID: mdl-35944237

ABSTRACT

The dominant DNA damage generated by UV exposure is the cyclobutane pyrimidine dimer (CPD), which alters skin cell physiology and induces cell death and mutation. Genome-wide nucleotide-resolution analysis of CPDs in melanocytes and fibroblasts has identified "CPD hyperhotspots", pyrimidine-pyrimidine sites hundreds of fold more susceptible to the generation of CPDs than the genomic average. Identifying hyperhotspots in keratinocytes could enable measuring individual past UV exposure in small skin samples and predicting future skin cancer risk. We therefore exposed neonatal human epidermal keratinocytes to narrowband UVB and quantified CPDs using the adductSeq high-throughput DNA sequencing method. Keratinocytes contained thousands of CPD hyperhotspots, with a UVB-sensitivity up to 550 fold greater than the genomic average. As with melanocytes, the most sensitive sites were located in promoter regions at ETS-family transcription factor binding sequence motifs, near RNA processing genes. Moreover, they lay at sequence motifs bound to ETS1 in CpG islands. These genes were specifically upregulated in skin and the CPD hyperhotspots were mutated in a fraction of keratinocyte cancers. Crucially for their biological importance and practical application, CPD hyperhotspot locations and UV-sensitivity ranking demonstrated high reproducibility across experiments and across skin donors. CPD hyperhotspots are therefore sensitive indicators of UV exposure.


Subject(s)
Pyrimidine Dimers , Ultraviolet Rays , DNA Damage , Humans , Infant, Newborn , Keratinocytes/metabolism , Pyrimidine Dimers/metabolism , Reproducibility of Results , Transcription Factors/metabolism
18.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119332, 2022 11.
Article in English | MEDLINE | ID: mdl-35940372

ABSTRACT

Ultraviolet (UV) light irradiation generates pyrimidine dimers on DNA, such as cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts. Such dimers distort the high-order DNA structure and prevent transcription and replication. The nucleotide excision repair (NER) system contributes to resolving this type of DNA lesion. There are two pathways that recognize pyrimidine dimers. One acts on transcribed strands of DNA (transcription-coupled NER), and the other acts on the whole genome (global genome-NER; GG-NER). In the latter case, DNA damage-binding protein 2 (DDB2) senses pyrimidine dimers with several histone modification enzymes. We previously reported that histone acetyltransferase binding to ORC1 (HBO1) interacts with DDB2 and facilitates recruitment of the imitation switch chromatin remodeler at UV-irradiated sites via an unknown methyltransferase. Here, we found that the phosphorylated histone methyltransferase mixed lineage leukemia 1 (MLL1) was maintained at UV-irradiated sites in an HBO1-dependent manner. Furthermore, MLL1 catalyzed histone H3K4 methylation and recruited the chromatin remodeler bromodomain adjacent to zinc finger domain 1A (BAZ1A)/ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1). Depletion of MLL1 suppressed BAZ1A accumulation at UV-irradiated sites and inhibited the removal of CPDs. These data indicate that the DDB2-HBO1-MLL1 axis is essential for the recruitment of BAZ1A to facilitate GG-NER.


Subject(s)
Leukemia , Pyrimidine Dimers , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Damage , DNA Repair , Humans , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism
19.
J Ethnopharmacol ; 299: 115621, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35987413

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus, also known as Tiger Milk Mushroom has been used traditionally to treat a variety of human conditions, including asthma, diabetes, respiratory disease, skin allergy, and food poisoning. The reported activities of Lignosus rhinocerus extracts include anti-inflammatory, anti-oxidant, anti-asthmatic, anti-microbial, anti-cancer, neuroprotection, and immune modulation effects. However, its effect on human skin is not well documented, including human skin exposed to ultraviolet light (UV). Exposure to UV can trigger various cellular responses, including inflammation, oxidative stress, DNA damage, cell death, and cellular aging. AIM OF THE STUDY: The study aims to investigate the effects of methanolic extract prepared from cultured Lignosus rhinocerus (herein referred to as TM02 and its methanol extract as TM02-ME) on UV-irradiated human keratinocytes. MATERIALS AND METHODS: Powdered stock of TM02 was dissolved and sequentially extracted with different solvents to prepare the extracts and the methanol extract was subsequently characterized based on its bio-activities on HaCaT human keratinocytes. The keratinocytes were pre-treated with the methanol extract followed by UV-irradiation. Cellular responses of the HaCaT cells such as cell viability, DNA damage, as well as gene and protein expressions that were responsive to the treatments, were characterized by using bio-assays, including reverse-transcription based PCR, Western blot, cell viability, and mitochondrial Cytochrome C release assays. RESULTS: TM02-ME protected HaCaT cells from UV-induced DNA damage and cell death in a dose-dependent manner. Pre-treatment of HaCaT cells with TM02-ME led to a 39% reduction of cyclobutane pyrimidine dimers (CPD) and up-regulated the gene expression of REV1 and SPINK5 in UVB-irradiated HaCaT cells when compared to the control. In addition, TM-02-ME treated HaCaT cells increased the expression of BCL-XL and BCL-2 proteins which coincided with the down-regulation of mitochondrial Cyt. C release in the UV-B irradiated HaCaT cells. The results were further supported by data that showed the stable clones of HaCaT cells stably expressed BCL-XL were resistant to UVB-induced cell death. CONCLUSIONS: __The results showed that TM02-ME confers photoprotective activities to UVB-irradiated HaCaT cells, leading to a reduction in DNA damage and cell death as well as up-regulated the expression of REV1 and SPINK5 which are involved in DNA repair and skin barrier function, respectively. The up-regulation of pro-survival members of the BCL-2 family by TM02-ME confers protection against UVB-induced cell death.


Subject(s)
Anti-Asthmatic Agents , Ultraviolet Rays , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Cytochromes c/metabolism , Humans , Keratinocytes , Methanol/pharmacology , Polyporaceae , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/pharmacology , Solvents/pharmacology , Ultraviolet Rays/adverse effects
20.
J Biol Chem ; 298(8): 102188, 2022 08.
Article in English | MEDLINE | ID: mdl-35753350

ABSTRACT

The UV-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 photoproducts), can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. The fully reduced flavin (hydroquinone, HQ) cofactor is required for the catalysis of both types of these photolyases. On the other hand, flavin cofactor in the semireduced state, semiquinone, can be utilized by photolyase homologs, the cryptochromes. However, the evolutionary process of the transition of the functional states of flavin cofactors in photolyases and cryptochromes remains mysterious. In this work, we investigated three representative photolyases (Escherichia coli CPD photolyase, Microcystis aeruginosa DASH, and Phaeodactylum tricornutum 6-4 photolyase). We show that the residue at a single site adjacent to the flavin cofactor (corresponding to Ala377 in E. coli CPD photolyase, hereafter referred to as site 377) can fine-tune the stability of the HQ cofactor. We found that, in the presence of a polar residue (such as Ser or Asn) at site 377, HQ was stabilized against oxidation. Furthermore, this polar residue enhanced the photorepair activity of these photolyases both in vitro and in vivo. In contrast, substitution of hydrophobic residues, such as Ile, at site 377 in these photolyases adversely affected the stability of HQ. We speculate that these differential residue preferences at site 377 in photolyase proteins might reflect an important evolutionary event that altered the stability of HQ on the timeline from expression of photolyases to that of cryptochromes.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Amino Acids/metabolism , Cryptochromes/genetics , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavins/metabolism , Pyrimidine Dimers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...